Synthetic genetic circuits in plants

Synthetic genetic circuits are powerful tools for reprogramming the behavior of living organisms. We are developing synthetic genetic circuits to control gene expression in plants. We are leveraging these circuits to modify the spatiotemporal patterns of gene expression in a variety of plants. The resulting synthetic circuits are then applied to change the plants' growth and behavior.

Controlling form to probe function

Structural features of a plant contribute to its ability to survive in challenging environments. For example, the size and shape of a plant’s root system influences its ability to reach essential nutrients in the soil or to acquire water during drought. Yet, our understanding of relationships between form and function remain limited. We are using synthetic gene circuits to modify the size and shape of plants and testing the modified plants for improved environmental stress tolerance. A better understanding of the plant features that are important for environmental stress tolerance would enable targeted breeding and biotechnological interventions that strengthen our agricultural systems.  

Engineered soil bacteria

Plants do not grow in isolation. Much like human microbiota, the bacteria that live in and around plants affect their health. We are developing tools that enable the engineering of undomesticated soil bacteria and are applying them to better understand and engineer the microbes that enhance plant growth in challenging environments. 

Research talks

Synthetic Biology Young Speaker Series (SynBYSS) - November 2022

JGI 25th Anniversary - August 2022

UC Berkeley Plant Genome Engineering Symposium - August 2022

Plant Physiology Webinar - February 2022

BioBuilder Career Conversation - January 2022

Synbio Oxford Seminar - April 2021

Bristol BioDesign Institute - March 2021